
   Modelling Curvilinear Fields for  

Beam Dynamics in the Muon g−2 Storage Ring 

 The E989 muon g-2 storage ring stores antimuons in 

a constant, uniform dipole field by use of a single ring 

magnet of radius ρ = 7.112 m. Straddling the beam tra-

jectory are 4 pairs of charged-plate electrostatic quad-

rupoles, used to focus the beam. 

 

 For beam dynamics in  

such a ring, it makes sense  

to use a curvilinear frame.  

Multipole field descriptions  

(used for efficient beam sim- 

ulations) in such a frame already  

exist*1,2,3+, but cannot be fit accurately to a given field 

map (obtainable from simulation or measurement). Of 

further concern are the fringe fields of the electro-

static quadrupoles, and variation in the magnetic field. 

1 − Introduction 

Figure 1: Layout 

of the electrostatic 

quadrupoles in the 

g−2 storage ring. 

 The toroidal coordinates (u, v) are defined such that: 

 

 
 

where ρ is the ring radius and x and y are the relative 

radial and vertical coordinates with respect to the 

beam axis, respectively. 
 

 A solution to the Laplacian in these coordinates 

yields the scalar potential φ  for a source-free region: 

 

 

 

where fm,n are a set of coefficients to be fit, Pa(x) are 

the Associated Legendre Polynomials of degree a and 

order b, and θ is the azimuthal (“longitudinal”) location 

within the ring (along the beam axis). 

x =                               − ρ     and    y =  
      ρ sinh(u) 

cosh(u) - cos(v) 

      ρ sin(v) 

cosh(u) - cos(v) 

φ =          (-i)    fm,n                Pn−½                   e      e    Σ 
∞ 

m,n = − 
(           ) 

      1 

tanh(u) 
−|m| m imv      inθ 

∞ 
b 

2 − Solutions of the Toroidal Laplacian 

 As well as following the ring curvature (as in Fig.1), 

the design of the quadrupoles incorporates a flat-plate 

cross-section, as in Fig.2. 

Using this design, field 

maps were produced in 

Opera3D*4+ to mimic 

those produced by the 

real plates. 
 

 The output potential 

results in electric fields 

which peak at the quadrupole ends — a feature not ex-

hibited by standard beamline magnetic fields. We can 

also expect the cross-section to contain a sextupole 

component, due to the slight asymmetry between the 

top/bottom and side plates. 

3 − Quadrupole Field Maps 
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Figure 2: Cross-

section of the g−2 

electrostatic quad-

rupoles, showing 

the storage region. 
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 Similar to fitting generalised gradients*5+; we take the 

transform of the fitting function and fit this to the po-

tential field, using data on a surface generated by fixing 

one coordinate. This value (in this case u) is chosen 

such that the surface extends to near the plates, for 

greatest accuracy. 

 

 The difference 

between the po-

tentials on the 

surface is shown 

in Fig.3. Differ-

ences peak at 5% 

in the fringe, with 

the difference 

within the bulk of the quadrupole settling at about 2%. 

4 − Coefficient Fitting 

 A 10,000 particle bunch was used to analyse the 

phase space differences caused by using the curvilinear 

model fringes, rather than the field map. The bunch 

was tracked 

through an up-

stream fringe, a 

multipole (for 

the quadrupole 

bulk), and a 

down-stream 

fringe. 
 

 Only small 

differences 

were found (in 

Fig.4, many points overlap perfectly). However, only 2 

fringe field regions were tracked through. 

5 − Tracking Comparisons 
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Figure 3: Potential from fit, minus that 
from map. Plates extend in ring azimuth 
from 1° onwards. 
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Figure 4: Vertical phase space after track-
ing with field map fringes (blue) and fitted 
curvilinear fringes (orange). 

 The results in Fig.4 look promising. However, two po-

tential improvements are suggested: 

 • Using a better integration method to fulfil the inte-

grations required for calculating the coefficients. It is 

hoped that this will reduce the peak values and re-

move the uniform 2% discrepancy on the right in Fig.3.  

 • Tracking through more fringe fields for the analy-

sis. This should give a clearer picture as to the accuracy 

of the new method. This was not performed here due 

to the current implementation being very inefficient. 
 

 This technique can also be used to model the bulk 

field regions, for which we may also include the g−2 

magnetic dipole field. However, the efficiency of the 

calculations during tracking must be vastly improved 

from the current setup for this method to be useful. 

6 − Conclusions 


